Heavy Flavor Measurements at RHIC in the Near Future

Nu Xu

Lawrence Berkeley National Laboratory

Many thanks to the conference organizers

and

X. Dong, A. Drees, S. Esumi, H.G. Ritter, A. Rose, K. Schweda, J. Thomas, Z. Xu, Y.F. Zhang

Outline

What we have observed

- jet energy loss
- collective flow and partonic collectivity
- chemical freeze-out near phase boundary

Recent heavy flavor results

- recent measurements
- controversies in total cross section results

> PHENIX & STAR (h.f.) upgrade plan

Summary

Experimental Results Show

In Au + Au collisions:

- (1) Partonic energy loss tense interactions among partons
- (2) Partonic collectivities and de-confinement
- (3) Hadron yields in the state of equilibrium

Multi-strange Hadron Ratios

- 1) Up to $p_T \sim 4$ GeV/c, both ϕ , Ω spectra are exponential
- 2) In heavy ion collisions at RHIC, up to p_T ~ 4 GeV/c, (*model predicts 8 GeV/c) the strangeness production is dominated by the thermal like processes.

*Hwa and Yang, nucl-th/0602024 Chen and Ko, PRC73 (2006) 044903

STAR data: QM05/SQM06, J. Chen, S. Blyth et al.

Slope Parameter Systematics

At RHIC, ϕ , Ξ , Ω , and J/ψ show collective motion in 200 GeV Au + Au central collisions!

PHENIX (π , K, p, J/ ψ): PRC69, 034909(04), QM05; STAR (ϕ , Ξ, Ω): QM05.

New Results from RHIC

Non-photonic electrons:

taken from S. Esumi (SQM06)

Au+Au@\s_NN=200GeV without charm flow Min.Blas non photonic e +e with charm flow 0.2 PHENIX preliminary 0.15 0.1 0.05 0.05 0.05 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1 0.05

Open-charm hadron spectra:

taken from Y. ZHang (SQM06)

- 1) Data prefers charm (heavy-flavor) hadrons flow
- 2) Interaction of colored-resonances at near T_c?

Greco, Ko, Rapp

PL**B595** ,202(04)

Heavy Flavor Hadron Energy Loss

- Non-photonic electrons decayed from charm and beauty hadrons
- 2) At $p_T \ge 6$ GeV/c,

$$R_{AA}(n.e.) \sim R_{AA}(h^{\pm})$$

contradicts to naïve pQCD predictions

Surprising results -

- challenge our understanding of the energy loss mechanism
- force us to RE-think about the collision energy loss
- requires isolation of c-hadrons contributions from b-hadrons

Three-body Elastic Scatterings

Chen & Ko (nucl-th/0602025):

- Three-body elastic ~ two-body radiative+elastic scattering
- How about other many-body interactions?

Quark Masses

- Higgs mass: electro-weak symmetry breaking. (current quark mass)
- 2) QCD mass: Chiral symmetry breaking. (constituent quark mass)
- Strong interactions do not affect heavy-quark masses.
- Important tool for studying properties of the hot/dense medium at RHIC.

Open-/Closed-charm Hadron Yields

A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, Phys.Lett. **B571**, 36(03).

- T. Matsui and H. Satz, Phys. Lett. **B178**, 416(1996).
- L. Grandchamp and R. Rapp, Phys. Lett. **B523**, 60(01).
- R. Thews, M. Schroedter, J. Rafelski, Phys. Rev. <u>C63</u> 054905(01).

- (1) open charm cross sections
- (2) direct pQCD production

- (3) medium effects (χ properties)
- (4) absorption (color screening)

Model results are different, centrality dependence measurements are important!

Charm Cross Sections at RHIC

- 1) Large systematic uncertainties
- 2) Theory under predict STAR ~ 2 x PHENIX

Charm Cross-section vs. N_{bin}

dσ(cc)/dy at RHIC

- Within error bars, N_{bin}-scaling is observed!
- Large systematic uncertainties
- 3) Theory under predict
- 4) dσ(cc)/dy at RHIC:

STAR ~ 2 x PHENIX

Decayed Electron p_T vs. c- and c-hadron p_T

The correlation between the decayed electrons and heavy-flavor hadrons is weak.

Pythia calculation Xin Dong, USTC October 2005

Upgrades Are Needed!

When systematic error dominates the data, new experiments (detectors) are called for.

PHENIX Upgrades

PHENIX Silicon Vertex Trackers

STAR Upgrades

- 1) Precision tracking detector: ≤ 8 μm single hit resolution
- 2) Topologically reconstructing charm-hadrons
- 3) Analyze charm-hadron flow (v₂) and energy loss (R_{AA})

The HFT Mechanical Design

- Two Layers of Si
 - 1.5 cm radius
 - 5 cm radius
- High Resolution
 - 100M pixels
 - $-30 \times 30 \mu m^2$
- Thin with low MCS
 - 50 μm thinned Si
 - 0.28% radiation length
 - 0.5 mm beam pipe
 - CMOS technology
- 24 Ladders
 - 10 chips, 2 x 20 cm²
 - 100 mW/cm² power budget
 - air cooled

Beam Views

- 2-layer Si hybrid pixels: x/x₀ ~ 1.2%;
 - 2.5cm inner radius; fast readout
- 2-layer Si strips, $x/x_0 \sim 2\%$

$$|\eta| \le 1.2$$

$$p_T \le 2 \text{ GeV/c}$$
 e^{\pm}

$$2 < p_T \le 6 \text{ GeV/c}$$
 D-mesons...

$$1 < p_T \le 6 \text{ GeV/c}$$
 $B \rightarrow J/\psi$

PHENIX VTX

- 2-layer CMOS: $x/x_0 \sim 0.28\%$;
 - 1.5cm inner radius; 200µs integration
- 1-layer* Si strip

$$|\eta| \leq 1$$

$$p_T > 0.5 \text{ GeV/c}$$
 e, $D^{0,\pm,s,*}$, Λ_c ...

e,
$$D^{0,\pm,s,*}$$
, Λ_c .

D-D correlation functions

C-hadron Reconstructions

- 1) D_s^0 , D_s^+ , Λ_c and their anti-particles can be reconstructed with the combination of the HFT+SSD*+TOF+TPC.
- 2) Decent reconstruction efficiencies at low p_T region important for flow analysis.
- 3) PHENIX VTX-barrel: reconstruct D at p_T ≥ 2GeV/c

Rates Estimate - v₂

(a) dN/dp_T distributions for D-mesons.

Scaled by $\langle N_{bin} \rangle = 290$, corresponds to the minimum bias Au + Au collisions at RHIC.

(b) Assumed v_2 distributions for D-mesons.

---- PLB 595, 202 (2004)

Error bars shown are from 15% systematic errors

- (c) 3-σ significance D⁰ efficiency with TPC+SSD+HFT.
- (d) D⁰ meson v₂ rates from minimum bias Au + Au collisions at 200 GeV.

The small and large error bars are for 15% and 30% systematic errors, respectively. For the v_2 analysis, 12 bins in ϕ are used.

	p _T (GeV/c)	Δp _T (GeV/c)	# of Events	# of Events	ĺ
			q _c does flow	q _c does not flow	ĺ
	0.6	0.2	260×10^{6}	525×10^{6}	
_	1.0	0.5	70×10^6	140×10^6	_
	1.0	0.5	70 ^ 10	140 ^ 10	П
	2.0	0.5	$53 \times 10^{\circ}$	125 ×10 ⁶	
	3.0	1.0	105×10^{6}	175×10^{6}	
	5.0	1.0	210 × 10°	440 × 10°	

Heavy Flavor Upgrades at RHIC

R&D phase
Construction phase
Ready for data
solid: Approved proposal

PHENIX

STAR

Summary

1) RHIC heavy flavor upgrades finish at 2010:

- high p_T c-hadron spectra
 - pQCD properties in hot/dense medium
- precise data on total cross section for c- and b-hadrons
- c-hadron correlation functions and flow
 - heavy flavor collectivity and light flavor thermalization
- surprises: charm R_{AA} data surprised us, more to come.
- ⇒ New era for understanding the medium properties at RHIC is coming.
- 2) Theory: Predictions on for c- and b-hadron distributions separately.

BERKELEY LAB

QCD Phase Diagram

